Description

Title How To Learn Causal Relations From Data?
Abstract Many questions in science, policy making and everyday life are of a causal nature: how would a change of A affect B? Causal inference, a branch of statistics and machine learning, studies how cause-effect relationships can be discovered from data and how these can be used for making predictions in situations where a system has been perturbed by an external intervention. The ability to reliably make such causal predictions is of great value for practical applications in a variety of disciplines. The standard method to discover causal relations is by using experimentation. Over the last decades, alternative methods have been proposed: constraint-based causal discovery methods can sometimes infer causal relations from certain statistical patterns in purely observational data. In this talk, I will introduce the basics of both approaches to causal discovery. I will discuss how these different ideas can be elegantly combined in Joint Causal Inference (JCI), a novel constraint-based approach to causal discovery from multiple data sets. This approach leads to a significant increase in the accuracy and identifiability of the predicted causal relations. One of the remaining big challenges is how to scale up the current algorithms such that large-scale causal discovery becomes feasible.

Other presentations by Joris Mooij

DateTitle
08 April 2019 How To Learn Causal Relations From Data?