Description

Title Representing the Structure of Images for Language Generation and Image Search
Abstract One approach to representing images is as a bag-of-regions vector, but this representation discards potentially useful information about the spatial and semantic relationships between the parts of the image. The central argument of the research is that capturing and encoding the relationships between parts of an image will improve the performance of downstream tasks. A simplifying assumption throughout the talk is that we have access to gold-standard object annotations. The first part of this talk will focus on the Visual Dependency Representation: a novel structured representation that captures region-region relationships in an image. The key idea is that images depicting the same events are likely to have similar spatial relationships between the regions contributing to the event. We explain how to automatically predict Visual Dependency Representations using a modified graph-based statistical dependency parser. Our approach can exploit features from the region annotations and the description to predict the relationships between objects in an image. The second part of the talk will show that adopting Visual Dependency Representations of images leads to significant improvements on two downstream tasks. In an image description task, we find improvements compared to state-of-the-art models that use either external text corpora or region proximity to guide the generation process. Finally, in an query-by-example image retrieval task, we show improvements in Mean Average Precision and the precision of the top 10 images compared to a bag-of-terms approach.

Other presentations by Desmond Elliott

DateTitle
24 November 2014 Representing the Structure of Images for Language Generation and Image Search