Description

Title Generalizing the Detection of Interactions in Clinical Guidelines
Abstract I'll present about the paper recently presented at HealthINF conference in Rome. This paper presents a method for formally representing Computer-Interpretable Guidelines to deal with multimorbidity. Although some approaches for merging guidelines exist, improvements are still required for combining several sources of information and coping with possibly conflicting pieces of evidence coming from clinical studies. Our main contribution is twofold: (i) we provide general models and rules for representing guidelines that expresses evidence as causation beliefs; (ii) we introduce a mechanism to exploit external medical knowledge acquired from Linked Open Data (Drugbank, Sider, DIKB) to detect potential interactions between recommendations. We apply this framework to merge three guidelines (Osteoarthritis, Diabetes, and Hypertension) in order to illustrate the capability of this approach for detecting potential conflicts between guidelines and eventually propose alternatives.