Title : Will you be Holland's Next Top Criminal? Do the Crime Check with Lifestyle Informatics

Presenter Tibor Bosse
Abstract On Saturday, November 6, the VU will organize the Bachelor Information day for high school scholars. On this day, in addition to the normal activities, the Bachelor Lifestyle Informatics will organize a special event: the Crime Check. During this interactive event, I will ask the audience a number of questions (via voting machines), in order to find out "what is the probability that they will become delinquent". In addition to entertaining the audience, the second goal of the event is of course providing information (in a fun way) about the types of skills students learn during the Bachelor programme. In my WAI talk, I will do (an English version of) the Crime Check with the audience. This presentation serves two purposes: 1) to inform you about the type of presentations that are given during PR actitivities for Lifestyle Informatics, and 2) to illustrate the possibilities of using voting machines during teaching.

Title : Comparison of Reasoners for large Ontologies in the OWL 2 EL Profile

Presenter Kathrin Dentler
Abstract This paper provides a survey to and a comparison of state-of-the-art Semantic Web reasoners that succeed in classifying large ontologies expressed in the tractable OWL 2 EL profile. Reasoners are characterized along several dimensions: The first dimension comprises underlying reasoning characteristics, such as the employed reasoning method, its soundness and completeness, the expressivity and worst-case computational complexity of its supported language and whether the reasoner supports incremental classification, rules, justifications for inconsistent concepts and ABox reasoning tasks. The second dimension is practical usability: whether the reasoner implements the OWL API and can be used via OWLlink, whether it is available as Protégé plugin, on which platforms it runs, whether its source is open or closed and which license it comes with. The last dimension contains performance indicators that can be evaluated empirically, such as classification, concept satisfiability, subsumption checking and consistency checking performance as well as required heap space and practical correctness, which is determined by comparing the computed class hierarchies with each other. For the very large ontology SNOMED CT, which is released both in stated and inferred form, we test whether the computed class hierarchies are correct by comparing them to the inferred form of the official distribution. The reasoners are categorized along the defined characteristics and benchmarked against well-known biomedical ontologies. The main conclusion from this study is that reasoners vary significantly with regard to all included characteristics, and therefore a critical assessment and evaluation of requirements is needed before selecting a reasoner for a real-life application.